Potential climate forcing of land use and land cover change
نویسندگان
چکیده
Pressure on land resources is expected to increase as global population continues to climb and the world becomes more affluent, swelling the demand for food. Changing climate may exert additional pressures on natural lands as present-day productive regions may shift, or soil quality may degrade, and the recent rise in demand for biofuels increases competition with edible crops for arable land. Given these projected trends there is a need to understand the global climate impacts of land use and land cover change (LULCC). Here we quantify the climate impacts of global LULCC in terms of modifications to the balance between incoming and outgoing radiation at the top of the atmosphere (radiative forcing, RF) that are caused by changes in long-lived and short-lived greenhouse gas concentrations, aerosol effects, and land surface albedo. We attribute historical changes in terrestrial carbon storage, global fire emissions, secondary organic aerosol emissions, and surface albedo to LULCC using simulations with the Community Land Model version 3.5. These LULCC emissions are combined with estimates of agricultural emissions of important trace gases and mineral dust in two sets of Community Atmosphere Model simulations to calculate the RF of changes in atmospheric chemistry and aerosol concentrations attributed to LULCC. With all forcing agents considered together, we show that 40 % (±16 %) of the present-day anthropogenic RF can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC RF by a factor of 2 to 3 with respect to the LULCC RF from CO2 alone. This enhancement factor also applies to projected LULCC RF, which we compute for four future scenarios associated with the Representative Concentration Pathways. We attribute total RFs between 0.9 and 1.9 W m to LULCC for the year 2100 (relative to a preindustrial state). To place an upper bound on the potential of LULCC to alter the global radiation budget, we include a fifth scenario in which all arable land is cultivated by 2100. This theoretical extreme case leads to a LULCC RF of 3.9 W m (±0.9 W m), suggesting that not only energy policy but also land policy is necessary to minimize future increases in RF and associated climate changes.
منابع مشابه
Hydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model
Predicting the impact of land cover and climate change on hydrologic responses using modeling tools are essential in understanding the movement and pattern of hydrologic processes within the watershed. The paper provided potential implications of land conversions and climate change scenarios on the hydrologic processes of Muleta watershed using soil and water assessment tool model. Model inputs...
متن کاملQuantifying the relative importance of land cover change from climate and land use in the representative concentration pathways
Climate change is projected to cause substantial alterations in vegetation distribution, but these have been given little attention in comparison to land use in the Representative Concentration Pathway (RCP) scenarios. Here we assess the climate-induced land cover changes (CILCC) in the RCPs and compare them to land use land cover change (LULCC). To do this, we use an ensemble of simulations wi...
متن کاملLand-Use/Land-Cover Change and Its Impacts on Weather and Climate
Land-use and land-cover changes (LULCC) significantly affect weather and climate as iswell documented in the scientific literature. These impacts include changes in air temperature, precipitation, atmospheric moisture content, energy fluxes, and mesoscale and potentially large-scale circulations. Recently, the United States National Research Council (2005) highlighted the importance of LULCC an...
متن کاملTransition Potential Modeling of Land-Cover based on Similarity Weighted Instance-based Learning Procedure and Its Implication in the REDD Project Design Document
Reducing Emissions from Deforestation and Forest Degradation (REDD) is a climate change mitigation strategy employed to reduce the intensity of deforestation and GHGS emissions. In recent decades, drastic land use changes in Mazandaran province caused a substantial reduction in the amount of Hyrcanian forests. The present research based on objectives of REDD projects paid to identify of fore...
متن کاملApplication of Artificial Neural Network in Landscape Change Process in Gharesou Watershed, Golestan Province
Land use change is certainly the most important factor that affects the conservation of natural ecosystems, resulting the conversion of natural lands such as forests and pastures into agricultural, industrial and urban areas. Despite numerous studies investigating landscape patterns due to land use change, the driving forces of landscape change has been less studied in Iran. In this study, Arti...
متن کاملEmpirical modeling potential transfer of land cover change pa city with neural network algorithms
Land-use change is one of the most important challenges of land-use planning that lies with planners, decision-makers and policymakers and has a direct impact on many issues, such as economic growth and the quality of the environment. The present study examines the land use change trends in Behbahan city for 2014 and 2028 using LCM in the GIS environment. Analysis and visibility of user variati...
متن کامل